
Chapter 7

AVL Tree

In the early 60’s G.M. Adelson-Velsky and E.M. Landis invented the first self-
balancing binary search tree data structure, calling it AVL Tree.

An AVL tree is a binary search tree (BST, defined in §3) with a self-balancing
condition stating that the difference between the height of the left and right
subtrees cannot be no more than one, see Figure 7.1. This condition, restored
after each tree modification, forces the general shape of an AVL tree. Before
continuing, let us focus on why balance is so important. Consider a binary
search tree obtained by starting with an empty tree and inserting some values
in the following order 1,2,3,4,5.

The BST in Figure 7.2 represents the worst case scenario in which the run-
ning time of all common operations such as search, insertion and deletion are
O(n). By applying a balance condition we ensure that the worst case running
time of each common operation is O(log n). The height of an AVL tree with n
nodes is O(log n) regardless of the order in which values are inserted.

The AVL balance condition, known also as the node balance factor represents
an additional piece of information stored for each node. This is combined with
a technique that efficiently restores the balance condition for the tree. In an
AVL tree the inventors make use of a well-known technique called tree rotation.

h
h+1

Figure 7.1: The left and right subtrees of an AVL tree differ in height by at
most 1

54



CHAPTER 7. AVL TREE 55

1

2

3

4

5

Figure 7.2: Unbalanced binary search tree

2

4

5

1

3

4

5

3

2

1

a) b)

Figure 7.3: Avl trees, insertion order: -a)1,2,3,4,5 -b)1,5,4,3,2



CHAPTER 7. AVL TREE 56

7.1 Tree Rotations

A tree rotation is a constant time operation on a binary search tree that changes
the shape of a tree while preserving standard BST properties. There are left and
right rotations both of them decrease the height of a BST by moving smaller
subtrees down and larger subtrees up.

14

24

11

8

2

8

14

24

2

11

Right Rotation

Left Rotation

Figure 7.4: Tree left and right rotations



CHAPTER 7. AVL TREE 57

1) algorithm LeftRotation(node)
2) Pre: node.Right ! = ∅
3) Post: node.Right is the new root of the subtree,
4) node has become node.Right’s left child and,
5) BST properties are preserved
6) RightNode ← node.Right
7) node.Right ← RightNode.Left
8) RightNode.Left ← node
9) end LeftRotation

1) algorithm RightRotation(node)
2) Pre: node.Left ! = ∅
3) Post: node.Left is the new root of the subtree,
4) node has become node.Left’s right child and,
5) BST properties are preserved
6) LeftNode ← node.Left
7) node.Left ← LeftNode.Right
8) LeftNode.Right ← node
9) end RightRotation

The right and left rotation algorithms are symmetric. Only pointers are
changed by a rotation resulting in an O(1) runtime complexity; the other fields
present in the nodes are not changed.

7.2 Tree Rebalancing

The algorithm that we present in this section verifies that the left and right
subtrees differ at most in height by 1. If this property is not present then we
perform the correct rotation.

Notice that we use two new algorithms that represent double rotations.
These algorithms are named LeftAndRightRotation, and RightAndLeftRotation.
The algorithms are self documenting in their names, e.g. LeftAndRightRotation
first performs a left rotation and then subsequently a right rotation.



CHAPTER 7. AVL TREE 58

1) algorithm CheckBalance(current)
2) Pre: current is the node to start from balancing
3) Post: current height has been updated while tree balance is if needed
4) restored through rotations
5) if current.Left = ∅ and current.Right = ∅
6) current.Height = -1;
7) else
8) current.Height = Max(Height(current.Left),Height(current.Right)) + 1
9) end if
10) if Height(current.Left) - Height(current.Right) > 1
11) if Height(current.Left.Left) - Height(current.Left.Right) > 0
12) RightRotation(current)
13) else
14) LeftAndRightRotation(current)
15) end if
16) else if Height(current.Left) - Height(current.Right) < −1
17) if Height(current.Right.Left) - Height(current.Right.Right) < 0
18) LeftRotation(current)
19) else
20) RightAndLeftRotation(current)
21) end if
22) end if
23) end CheckBalance

7.3 Insertion

AVL insertion operates first by inserting the given value the same way as BST
insertion and then by applying rebalancing techniques if necessary. The latter
is only performed if the AVL property no longer holds, that is the left and right
subtrees height differ by more than 1. Each time we insert a node into an AVL
tree:

1. We go down the tree to find the correct point at which to insert the node,
in the same manner as for BST insertion; then

2. we travel up the tree from the inserted node and check that the node
balancing property has not been violated; if the property hasn’t been
violated then we need not rebalance the tree, the opposite is true if the
balancing property has been violated.



CHAPTER 7. AVL TREE 59

1) algorithm Insert(value)
2) Pre: value has passed custom type checks for type T
3) Post: value has been placed in the correct location in the tree
4) if root = ∅
5) root ← node(value)
6) else
7) InsertNode(root, value)
8) end if
9) end Insert

1) algorithm InsertNode(current, value)
2) Pre: current is the node to start from
3) Post: value has been placed in the correct location in the tree while
4) preserving tree balance
5) if value < current.Value
6) if current.Left = ∅
7) current.Left ← node(value)
8) else
9) InsertNode(current.Left, value)
10) end if
11) else
12) if current.Right = ∅
13) current.Right ← node(value)
14) else
15) InsertNode(current.Right, value)
16) end if
17) end if
18) CheckBalance(current)
19) end InsertNode

7.4 Deletion

Our balancing algorithm is like the one presented for our BST (defined in §3.3).
The major difference is that we have to ensure that the tree still adheres to the
AVL balance property after the removal of the node. If the tree doesn’t need
to be rebalanced and the value we are removing is contained within the tree
then no further step are required. However, when the value is in the tree and
its removal upsets the AVL balance property then we must perform the correct
rotation(s).



CHAPTER 7. AVL TREE 60

1) algorithm Remove(value)
2) Pre: value is the value of the node to remove, root is the root node
3) of the Avl
4) Post: node with value is removed and tree rebalanced if found in which
5) case yields true, otherwise false
6) nodeToRemove ← root
7) parent ← ∅
8) Stackpath ← root
9) while nodeToRemove 6= ∅ and nodeToRemove.V alue = V alue
10) parent = nodeToRemove
11) if value < nodeToRemove.Value
12) nodeToRemove ← nodeToRemove.Left
13) else
14) nodeToRemove ← nodeToRemove.Right
15) end if
16) path.Push(nodeToRemove)
17) end while
18) if nodeToRemove = ∅
19) return false // value not in Avl
20) end if
21) parent ← FindParent(value)
22) if count = 1 // count keeps track of the # of nodes in the Avl
23) root ← ∅ // we are removing the only node in the Avl
24) else if nodeToRemove.Left = ∅ and nodeToRemove.Right = null
25) // case #1
26) if nodeToRemove.Value < parent.Value
27) parent.Left ← ∅
28) else
29) parent.Right ← ∅
30) end if
31) else if nodeToRemove.Left = ∅ and nodeToRemove.Right 6= ∅
32) // case # 2
33) if nodeToRemove.Value < parent.Value
34) parent.Left ← nodeToRemove.Right
35) else
36) parent.Right ← nodeToRemove.Right
37) end if
38) else if nodeToRemove.Left 6= ∅ and nodeToRemove.Right = ∅
39) // case #3
40) if nodeToRemove.Value < parent.Value
41) parent.Left ← nodeToRemove.Left
42) else
43) parent.Right ← nodeToRemove.Left
44) end if
45) else
46) // case #4
47) largestV alue ← nodeToRemove.Left
48) while largestV alue.Right 6= ∅
49) // find the largest value in the left subtree of nodeToRemove
50) largestV alue ← largestV alue.Right



CHAPTER 7. AVL TREE 61

51) end while
52) // set the parents’ Right pointer of largestV alue to ∅
53) FindParent(largestV alue.Value).Right ← ∅
54) nodeToRemove.Value ← largestV alue.Value
55) end if
56) while path.Count > 0
57) CheckBalance(path.Pop()) // we trackback to the root node check balance
58) end while
59) count ← count− 1
60) return true
61) end Remove

7.5 Summary

The AVL tree is a sophisticated self balancing tree. It can be thought of as
the smarter, younger brother of the binary search tree. Unlike its older brother
the AVL tree avoids worst case linear complexity runtimes for its operations.
The AVL tree guarantees via the enforcement of balancing algorithms that the
left and right subtrees differ in height by at most 1 which yields at most a
logarithmic runtime complexity.


